“The project is divided into two separate contracts – CAPA South and CAPA North – and both demand the same approach,” he said. “The south portion of the project started in June 2020 with a clearing operation to remove trees and vegetation from the prospective apron area. With the area cleared, one of our subcontractors came in to lay a mat of geogrid designed to stabilize the area – both the material below and the sand which gets placed on top of it.”
The multiple lifts of sand and geogrid – as well as the settling plates set upon the final lift – are part of a surcharge process which will essentially displace the water and stabilize the soil making it suitable for paving. Not surprisingly, the volume of material demanded for such a process is massive.
“CAPA South took more than 40,000 truckloads – about a half million tons – of sand to surcharge that area,” said Murchison. “And we anticipate the same to be true for the north facet of the job. Once we’ve placed the specified depth of material, which can be as much as 10 feet of sand, and installed the settling plates, we use a digital level to monitor the settling process.”
“After 13 settling plates were set, that level initially took measurements every day,” he said. “The measurements were critical in determining when the marsh was considered stable enough for construction. That digital level was the star in that part of the operation, for sure.”
Your local Wirtgen America dealer |
---|
Brandeis Machinery |
Once the geotechnical engineering team determined that settling had, in fact, ceased – Murchison said the process for the south CAPA took more than a year – they removed the surcharge, graded the area in advance of a 1-foot thick graduated aggregate base course (GABC) and began paving.
“We recently did a project at Pope AFB in North Carolina in which we removed and replaced the entire runway in 120 days,” he said. “On that project, we were placing around 3,200 cubic yards of concrete, more than 320 trucks worth, per day. We have the people and equipment to make the workflow smooth and efficient.”
Established in 1986, RC Construction Co., self-performs a range of services including concrete placement/paving, demolition, grading, drainage, and base course installation. Their specialties in airport infrastructure work include airfield platforms and systems, hangars, transport roads, runways, taxiways, and aprons.
“The work we’re doing here at Hurlburt is really our forte, probably representing about 90 percent of the projects we do, so we are well-equipped to handle it,” added Murchison.
“RC has been a user of Topcon GPS machine control for about 11 years now,” he said. “Our confidence in the technology is evident everywhere here. We used it – and continue to use it – on graders and dozers working the surcharge operation. We used it to lay down and clip the GABC. We use it on our excavator digging utility trenches for the project. And we currently have machine control guiding the tracking of the GOMACO PS-2600 Spreader we are using to feed the paver. So, on a project like this in which accuracy and production are key, going with the Millimeter GPS solution, which eliminates the need for both grade stakes and stringline, just made sense.”
RC’s millimeter-grade GNSS paving solution begins with a series of Topcon PZL-1 laser transmitters positioned at established reference points adjacent to the apron lanes, each transmitting a “laser-zone” of vertical data to a pair of Topcon PZS-MC sensors mounted on the company’s GOMACO GP-4 Slipform Paver. Using that information, Millimeter GPS sets the necessary height of the paver, and dramatically tightens vertical accuracies. That proved ideal for RC’s needs at Hurlburt. Even though specs demanded finished grade tolerances of plus or minus 1/2-inch, Murchison said they were typically paving within plus or minus 1/8-inch.
“Using step and slip, in which one track of the paver is up on a finished lane and the other is at grade, was my brother Scott’s idea,” said Murchison. “He felt that doing the three pilots and then using the step and slip approach for the balance of the lanes would produce a better grade across the apron. Because he’s done this so many years more than I have, I deferred to his decision – and that definitely turned out to be the case. When we tested those joints, there was no light between them – the blending is seamless.”
Because of the length of the lanes on the Hurlburt project, RC is using a “paving train” which consists of the spreader at the front, the paver, and a Spanit 4000 work bridge at the rear. The spreader takes material from 10-yard end-dumps onto a loading conveyor which places it in front of the unit. Then, using a horizontal auger, the mounded concrete is uniformly spread – both laterally and vertically – on the lane.
“Doing that helps ensure the concrete “head” in front of the paver is also uniform, which enhances both production and smoothness,” said Murchison. “The work bridge provides the final touch in the paving operation, creating a burlap drag finish on the apron’s surface.”
“In terms of setup time, this 3,000 psi mix design has just been off the charts,” said Murchison. “Only three or four days after placement, it is already at 2,500 psi, which is great because it allows us to get on it to address coring points, drive on it if needed, etc. It’s really worked to our favor in helping keep production levels up.”
The full scope of RC’s work taking place at Hurlburt also includes installation of storm drainage, subdrainage, water, sewer, force main, as well as prepping for electrical distribution and communications. And, as mentioned, RC Construction’s belief in GNSS technology is playing a role in nearly every facet of the job.
“Our commitment to Topcon machine control is strong and it’s based on the results we’ve gotten from it over the years,” said Murchison. “So, tapping the stringless paving solution for this job was literally a no-brainer. The production is there, the accuracies are there, the ability to provide a safer work environment is there – the benefits speak for themselves.”